**ABSTRACT (in alphabetical order):**

(Download the Book of Abstracts)

References

[1] R. Alicandro, G. Dal Maso, G. Lazzaroni, M.Palombaro, Derivation of a linearised elasticity model from singularly perturbed multiwell energy functionals.

Arch. Rational Mech. Anal.

230

(2018), 1--45.
[2] A. Braides, M. Solci, E. Vitali, A derivation of linear elastic energies from pair-interaction atomistic systems.

Networks and Heterogeneous Media

2

(2007), 551--567.
[3] G. Dal Maso, M. Negri, D. Percivale, Linearized elasticity as ?-limit of finite elasticity.

Set-Valued Analysis

10

(2002), 165--183.
[4] B. Schmidt, On the derivation of linear elasticity from atomistic models.

Networks and Heterogeneous Media

4

(2009), 789--812.
References

[1] G. Bellettini, A. Elshorbagy, M. Paolini, R. Scala, On the relaxed area of the graph of discontinuous maps from the plane to the plane taking three values with no symmetry assumptions.

Ann. Mat. Pura Appl.

(2019), 1--33.
[2] R. Scala, Optimal estimates for the triple junction function and other surprising aspects of the area functional.

Ann. Sc. Norm. Super. Pisa Cl. Sci.

2

(2020), to appear.
This is work in collaboration with Valeria Chiado Piat [2], and is related to previous work on fast oscillating boundaries [1] and on the homogenization of singular structures (e.g. in [3-5]).

References

[1] Ansini and A. Braides, Homogenization of oscillating boundaries and applications to thin films.

J. Anal. Math.

83

(2000), 151--181.
[2] A. Braides, V. Chiado Piat, Homogenization of networks in domains with oscillating boundaries.

Appl. Anal.

98

(2019), 45--63.
[3] A. Braides, V. Chiado Piat, Non convex homogenization problems for singular structures.

Netw. Heterog. Media

3

(2008), 489--508.
[4] V. V. Zhikov, Homogenization of elasticity problems on singular structures.

Dokl. Ross. Akad. Nauk.

380

(2001), 741--745; translation in Dokl. Math.

64

(2001).
[5] V. V. Zhikov and S. E. Pastukhova, Homogenization on periodic lattices.

Dokl. Ross. Akad. Nauk.

391

(2003), 443--447; translation in Dokl. Math.

68

(2003).
This is a joint work with Matteo Novaga (U. Pisa).

References

[1] F. Almgren, J.E. Taylor, and L. Wang, Curvature-driven flows: a variational approach.

SIAM J. Control Optim.

31

(1993), 387--438.
[2] A. Chambolle, M. Morini, M. Novaga, and M. Ponsiglione, Existence and uniqueness for anisotropic and crystalline mean curvature flows.

J. Amer. Math. Soc.

, to appear.
[3] A. Chambolle, M. Morini, and M. Ponsiglione, Existence and uniqueness for a crystalline mean curvature flow.

Comm. Pure Appl. Math.

70

(2017), 1023--1220.
[4] G. De Philippis, T. Laux, Implicit time discretization for the mean curvature flow of outward minimizing sets.

Ann. Sc. Norm. Super. Pisa Cl. Sci.

, to appear.
[5] S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation.

Calc. Var. Partial Differential Equations

3

(1995), 253--271.
The results presented are contained in a recent paper in collaboration with G. Orlando (TUM) and M. Ruf (EPFL).

This is joint work with Luca Courte and Ulisse Stefanelli.

References

[1] J.W. Evans, P.A. Thiel, and M.C. Bartelt, Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds.

Surface Science Reports

61

(2006) 1--128; Y. Han et al. Scaling of capture zone area distributions? J. Chem. Phys.

145

(2016), 211911.
[2] Y. Han, D.-J. Liu and J.W. Evans, Real-time ab-initio KMC simulation of self-assembly and sintering of bimetallic nanoclusters: Au+Ag on Ag(100).

Nano Letters

14

(2014), 4646.
[3] K.C. Lai, et al., Reshaping, intermixing and coarsening for metallic nanocrystals: Non-equilibrium stat mech and coarse-grained modeling.

Chemical Reviews

119

(2019), 6670--6768.
[4] Y. Han, et al., Anisotropic coarsening: 1D decay of Ag on Ag(110).

PRB

87

(2013), 155420.
[5] H. Walen, et al., Mass transport enhancement via Cu2S3 on Cu(111).

PRB

91

(2015), 045426.
This is joint work with Emanuele Spadaro (U. Roma La Sapienza).

References

[1] M. Focardi, E. Spadaro, How a minimal surface leaves a thin obstacle.

arXiv:1804.02890

From joint works in collaboration with R. Alicandro and M. Palombaro [1,2].

References

[1] R. Alicandro, G. Lazzaroni, M. Palombaro. On the effect of interactions beyond nearest neighbours on non-convex lattice systems.

Calc. Var. Partial Differential Equations

152

(2019). (2017).
[2] R. Alicandro, G. Lazzaroni, M. Palombaro. Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours.

Netw. Heterog. Media

13

(2018), 1-26.
This is joint work with Irene Fonseca and Gianni Dal Maso.

References

[1] C. A. F. Vaz, J. A. C. Bland, G. Lauhoff, Magnetism in ultrathin film structures.

Rep. Prog. Phys.

71

(2008), 056501.
[2] O. Boulle, et al., Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures.

Nature Nanotech.

11

(2016), 449--454.
[3] M. Jugovac, et al., Role of carbon dissolution and recondensation in graphene epitaxial alignment on cobalt.

Carbon

152

(2019), 489--496.
[4] D. Sayre, Some implications of a theorem due to Shannon.

Acta Cryst.

5

(1952), 843.
This is joint work with Marco Bonacini and Elisa Davoli.

References

[1] N. Fusco, V. Julin, M. Morini. The surface diffusion flow with elasticity in the plane.

Comm. Math. Phys.

362

(2018), 571–607.
[2] N. Fusco, V. Julin, M. Morini. The surface diffusion flow with elasticity in three dimensions.

Preprint

[3] I. Fonseca, N. Fusco, G. Leoni, M. Morini. Motion of three-dimensional elastic films by anisotropic surface diffusion with curvature regularization.

Analysis & PDE

8

(2015), 373–423.
This is joint work with V.V. Slastikov, A.G. Kolesnikov, and O.A. Tretiakov. Support by NSF via grants DMS-1313687 and DMS-1614948 is gratefully acknowledged.

References

[1] C.B. Muratov and V.V. Slastikov. Domain structure of ultrathin ferromagnetic elements in the presence of Dzyaloshinskii-Moriya interaction.

Proc. R. Soc. Lond. Ser. A

473

(2016), 20160666.
[2] C.B. Muratov, V.V. Slastikov, A.G. Kolesnikov, and O.A. Tretiakov. Theory of Dzyaloshinskii domain wall tilt in ferromagnetic nanostrips.

Phys. Rev. B

96

(2017), 134417.
These results are in collaboration with L. De Luca and M. Ponsiglione.

This is joint work with S. Fanzon and M. Ponsiglione [3].

References

[1] W. T. Read, W. Shockley. Dislocation models of crystal grain boundaries.

Phys. Rev.

98

(1950), 275--289.
[2] A. Garroni, G. Leoni, M. Ponsiglione. Gradient theory for plasticity via homogenization of discrete dislocations.

J. Eur. Math. Soc. (JEMS)

12

(2010), 1231--1266.
[3] J. S. Fanzon, M. Palombaro, M. Ponsiglione. Derivation of linearised polycrystals from a two-dimensional system of edge dislocations.

SIAM Journal on Mathematical Analalysis

, to appear.
References

[1] A. Figalli, N. Fusco, F. Maggi, V. Millot, M. Morini. Isoperimetry and stability properties of balls with respect to nonlocal energies.

Comm. Math. Phys.

336-1

(2015), 441-507.
[2] R. Frank, E. Lieb. Proof of spherical flocking based on quantitative rearrangement inequalities.

Preprint

[3] N. Fusco, A. Pratelli. Sharp stability for the Riesz potential.

Preprint

References

[1] J. Geessinck, G. Araizi-Kanoutas, N. Gauquelin, M.S. Golden, G. Koster, G. Rijnders. Charge transfer at the LaCoO3-LaTiO3 interface.

In press

.
[2] Z. Liao, G. Rijnders et al, 15, 425 (2016)

Nat. Mater.

15

2016, 425.
References

[1] M. de Benito Delgado, B. Schmidt, A hierarchy of multilayered plate models.

arXiv:1905.11292

(2019).
[2] M. de Benito Delgado, B. Schmidt, Energy minimizing configurations of pre-strained multilayers.

arXiv:1907.00447

(2019).
The work is a joint collaboration with David Nezval, Miroslav Barto\v{s}\'{i}k, Jind\v{r}ich Mach, Jakub Piastek, Pavel Proch\'{a}zka, Vojt\v{e}ch \v{S}varc, and Miroslav Kone\v{c}n\'{y}.

References

[1] J. Mach, P. Proch\'{a}zka, M Barto\v{s}\'{i}k, D. Nezval, J. Piastek, J. Hulva, V. \v{S}varc, M. Kone\v{c}n\'{y}, L. Kormo\v{s}, and T. \v{S}ikola, Electronic transport properties of graphene doped by gallium.

Nanotechnology

28

(2017), 415203.
References

[1] J. Han, S.L. Thomas, D.J. Srolovitz. Grain-Boundary Kinetics: a unified approach.

Progress in Materials Science

98

(2018), 386--476.
[2] S.L. Thomas, K.T. Chen, J. Han, P.K. Purohit D.J. Srolovitz. Reconciling grain growth and shear-coupled grain boundary migration.

Nature Communications

8

(2017), 1764.
[3] L.C. Zhang, J. Han, Y. Xiang, D.J. Srolovitz. Equation of Motion for a Grain Boundary.

Physical Review Letters

119

(2017), 246101.
[4] S.L. Thomas, C.Z. Wei, J. Han, Y. Xiang, D.J. Srolovitz, A disconnection description of triple junction motion.

PNAS

116

(2019), 8756-8765.
[5] K.T. Chen, J. Han, S.L. Thomas, D.J. Srolovitz, Grain boundary shear coupling is not a grain boundary property.

Acta Materialia

167

(2019), 241-247.
[6] C.Z. Wei, L.C. Zhang, J. Han, D.J. Srolovitz, Y. Xiang, Grain boundary triple junction dynamics: a continuum disconnection model.

arXiv:1907.13469

(2019).
[7] C.Z. Wei, S.T. Thomas, J Han, D.J. Srolovitz, Y Xiang, A Continuum Multi-Disconnection-Mode Model for Grain Boundary Migration.

arXiv:1905.13509

(2019).
Research has been performed together with G. Hlawacek, M. Kratzer, A. Matkovic, J. Genser, K.-P. Gradwohl, A. Cicek, B. Kaufmann, J. Liu, S. Klima (Leoben), R. van Gastl, F. Khokhar, H. Zandvliet, B. Poelsema (Univ. of Twente), B. Kollmann, D. Lueftner, P. Puschnig (University of Graz), Z. Shen, O. Siri, C. Becker (CINAM-CNRS, Aix Marseille University), B. Vasic, I. Stankovic, R. Gajicc (University of Belgrade) and was supported by the Austrian Science Fund (FWF) under project I 1788-N20.

References

[1] G. Hlawacek, et al.,

Nano Lett.

11

(2011), 333.
[2] M. Kratzer, C. Teichert,

Nanotechnology

27

(2016), 292001.
[3] A. Matkovic, et al.,

Sci. Rep.

6

(2016), 38519.
[4] B. Vasic, et al.,

Nanoscale

10

(2018), 18835.
[5] A. Matkovic, et al.,

under review

This is a joint work with Paolo Piovano (University of Vienna).

References

[1] Y. A. Yeung, G. Friesecke and B. Schmidt. Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape.

Calc. Var. Partial Differential Equations,

44

(2012), 81--110.
[2] P. Piovano and I.Velcic. Microscopical justification of the Winterbottom shape.

Preprint.

This talk is based on joint works with S. Conti, J. Diermeier, M. Lenz, N. Lüthen, D. Melching, and M. Rumpf.